Simultaneous Tapping Control Structure and Adjustment Technology
Knowledge

Simultaneous Tapping Control Structure and Adjustment Technology

With the rapid development of 3C products and the aerospace components industry, the technology of CNC machine tool rigid tapping is more widely used.
Published: Nov 30, 2022
Simultaneous Tapping Control Structure and Adjustment Technology

What is Tapping?

Tapping refers to threading the inner wall of a hole and making threads so that corresponding bolts or screws can be connected to it.

Tapping development:

The non-servo spindle control architecture of the early RTEX system was limited by the spindle loop system, and a trade-off between precision and speed had to be made during machining. The machining efficiency was affected and the tool wear was greater, resulting in increased costs. The improvement of the servo control architecture has always been an industry The goal of hard work is to make the CNC machine tool controller provide more precise and high-speed processing characteristics. In recent years, the process of rigid tapping has developed towards the trend of short time, and high precision and the tapping hole diameter and thread must be within standard tolerances.

Internal thread processing is an important procedure in the manufacture of mechanical parts. The cutting method of the traditional floating tapping machine cannot predict the dynamic characteristics of the tap and the material. Under severe cutting conditions, the blade may be worn or broken, and the tool's life will be shortened. The processing conditions affect the manufacturing quality and performance of the workpiece. Rigid tapping is to match the speed and feed with the pitch of the tap and use the synchronous control method to cut the thread with the rotation of the spindle and the movement of the feed axis. This control method improves the pitch accuracy, reduces the damage rate of the internal thread, reduces the problem of tool wear, and improves the service life of the tap, which applies to various cutting materials and cutting conditions. Among them, the path overlap of rigid tapping pecking cycle cutting is high, and the requirements for the synchronous control performance of spindle rotation and servo axis feed are higher. Therefore, rigid tapping synchronous control technology is one of the important performances in the development of machine tool internal thread processing.

Rigid Tapping Synchronous Control Structure:

The control methods widely used in the industry include zero-phase error compensation and cross-coupling control, etc.; the rigid tapping master-slave control structure belongs to tracking motion, that is, the relationship between the main shaft and the servo axis is a straight-line system architecture, and the feedback of the main shaft The position is used as the input signal of the servo axis, and the servo axis with the fast response is used to follow the trajectory of the main shaft. When the movement of the main shaft is disturbed, the error of the main shaft cannot be corrected immediately, resulting in servo lag and tracking error during the movement of the following axis. The tracking error value is theoretically proportional to the speed of the Z axis, so the control system has limitations. The zero-phase error compensation method can enhance the tracking ability of the servo axis and improve the servo tracking error problem, but the disadvantage of zero phase error compensation is the previous feed-forward compensation value is a fixed value. When the processing conditions change or the system is disturbed by the outside world if the control system does not have the ability of adaptive adjustment to reflect the system changes. The feed-forward compensation value must be manually re-adjusted so that the control system maintains motion accuracy. However, manual adjustment is not only time-consuming but also requires experienced processing masters to complete. Therefore, this article will introduce the rigid tapping synchronous control motion architecture. The use of the cross-coupling control method is mainly to improve the servo lag and adjust the position error between the main shaft and the servo axis to reduce the contour error, and greatly improve the rigid tapping processing efficiency and the dimensional accuracy of the thread.

Rigid Tapping Synchronous Control Technology:

The synchronous control of rigid tapping in the controller can be divided into two parts, the control command, and the control loop. When performing G74/G84 rigid tapping, the Z-axis feed corresponding to one revolution of the spindle must comply with the thread pitch specification F/S=P of the tap, so that the spindle rotation and Z-axis linear motion must maintain the same pitch state. The rotation of the main shaft and the Z-axis feed not only have speed control, but position control is more important. The control command must establish a motion control path planning module. In the path planning module, the interpolation amount of the spindle and the Z axis is planned separately. After the motion path is planned according to the spindle speed command and the moving distance of the Z axis, linear interpolation is performed. Make the spindle and Z-axis commands achieve synchronous interpolation control, then the subsequent acceleration/deceleration is also processed independently. And use S Curve to plan the acceleration and deceleration curve to improve the problem of linear acceleration and deceleration jerk, so that the speed curve of the movement changes smoothly. Reduces the vibration of the machine, and reduces the problem of tool interruption during the rigid tapping process.

Variable Gain Cross-coupling Control Law

The variable gain cross-coupling control method in the control loop mainly does not change the motion control loop of each axis but applies the compensator to the control loop of each axis. The purpose is not to improve the tracking error of each axis, but to coordinate the position error of each axis to eliminate the contour error between the two axes, and adjust the contour error according to different trajectory forms. Establish a real-time position error calculation module based on the position response of each axis, and then generate an appropriate feedback signal through the position error compensation module. And distribute it to each axis for compensation, so that the dynamic response of each axis can be matched, thereby improving contour error. The controller in the position error calculation module does not need to modify the motion control structure of each axis, but the position closed-loop control is performed by the error of the position command and position feedback of each axis, and the position error compensation module controls the position of each axis. Adding variable gain CxCy to the loop can moderately adjust the contour error gain value according to different trajectory forms, and then compensate the error value required by each axis to the corresponding axis according to the proportional relationship through the PID control law. This control law Taking into account the mismatch of parameters between the spindle and the servo axis and unstable factors such as incoordination during motion, the rigid tapping synchronous control architecture will use variable gain cross-coupling control to have a good inhibitory effect on the synchronous error of each axis and realize speed control. high precision purposes.

Published by Nov 30, 2022 Source :automan

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. However, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. However, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. However, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. However, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree