Tooling 4.0: Connecting Industry 4.0 To Mold And The Mold Manufacturer of The Future
Trend

Tooling 4.0: Connecting Industry 4.0 To Mold And The Mold Manufacturer of The Future

Do you know the new words about tooling 4.0? Here we provide some introduction and example that manufacturers can know and follow the direction. Tooling 4.0 improves all about using technology to turn "clumsy" products into "smart" products.
Published: Apr 06, 2020
Tooling 4.0: Connecting Industry 4.0 To Mold And The Mold Manufacturer of The Future

Tooling 4.0

In the Industry 4.0 era, engineered molds with digital outputs will be the norm, and the mold supplier committed to “engineered” molds is the mold builder of the future.

For many plastic processors and mold makers, robotics and automation are the first things that come to mind when considering Industry 4.0. When manufacturers start thinking about machine-to-machine connections, data collection, measurable output, and artificial intelligence, then you are thinking about connecting industry 4.0 (IoT) technology to the mold and molding process. Under the increasing cost pressure and fiercer competition, tool manufacturers are pushing to accept new concepts such as Tooling 4.0 and reduce the number of tool components and processes to achieve the industrialization of their operations to reduce idle time and delivery time.

The first step to applying Industry 4.0 is ensuring that every employee understands that it will help resources better comprehend and measure the dynamics that are taking place between the press, mold, and resin.Industry 4.0 is not meant to replace people, but to help people make informed decisions by using the generated data. Let people understand this principle is the key to the successful implementation of Industry 4.0.

For example, in the mold condition category, the data we measure will help to assess the overall condition of the mold in each factory. The data we collect includes the reasons for the molding process machine stop, any molded products (non-conforming products) and target cycle time, just for instance a few. Then it is time to use scientific molding and data collection to develop a plan to raise the mold to a new level, which requires the right tools, processes, and measurable output. Engineering design of a product (in this case, an injection mold) refers to obtaining a measurable output through mathematics and science. The purpose of the next step is to understand what is happening inside the mold during each cycle by measuring physical dynamics. For example, items to be measured include pressure, temperature and time. Outputs include a balanced runner system (Beaumont theory), mold temperature control (calculated GPM; temperature sensor), conformal cooling (estimated cycle time and part quality target), and calculation of optimized exhaust (pressure sensor). In the era of Industry 4.0, engineering molds with digital output will become the norm, and mold suppliers dedicated to engineering molds will become future mold manufacturers. So, instead of flying by the seat of our pants, we can now fly by instruments and actually understand what is happening inside of the mold and then make any necessary adjustments.

After each factory completes this step, a series of priority objectives will be established in each category. These goals will drive the factory's continuous improvement tooling projects, such as collecting data to ensure that standard operating conditions (SOC) are updated to reflect the current molding conditions of production tolerance parts. Each plant will prioritize its priorities within a period of six months to a year and then reassess its current status. It is expected that OEM / suppliers will have high hopes for mold makers in the future to take full advantage of advanced technology.

The advantages of the mold after entering the tool 4.0

Reverse Engineering: Able to handle older molds and mold components, and accurately measure and create 3D models and prints that have been constructed.

Virtual mold analysis: Ability to digitally create molding processes with measurable goals before designing injection molds, determine measurable cycle times (filling, filling, cooling, pressure), determine warpage, venting, part dimensions and steel safety areas, and use Pressure and temperature sensors, for example, as well as other scientific molding information, and knowledge of disassembly of arm-end tools and robot parts.

Mold engineering capabilities: It can output 3D mold models for virtual analysis, as well as complete detailed / tolerance drawings (.dwg output), and has detailed mold assembly manuals and PM recommendations.

Knowledge of hot runner system: Learn about fixed tips, valve gates, hot edge gates and system balance.

Manufacturing / measurement of interchangeable mold components: It has the ability to manufacture and guarantee interchangeable mold components, confirm / certify key steel dimensions, coordinate measuring machines and laser scanning functions.

Experience the experience of manufacturing high-cavity injection molds: Experience in injection molding with 16 or more cavities; test mold function with data collection (using mold analysis) and scientific molding experience (pressure, temperature sensor).

Injection mold testing capabilities: FOT, FAT, SAT (see sidebar) and DOE experience, process development and turnkey functions.

With the popularization of the Internet of Things, experts suggest that the adoption of Industry 4.0 is critical to the survival of enterprises. However, regardless of the size of the company, moving the organization to smart manufacturing is a multifaceted project. In short, Industry 4.0 and Tooling 4.0 are all about using technology to turn "clumsy" products into "smart" products.

Published by Apr 06, 2020 Source :Moulding of Die Mold, moldingofdieandmould

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree