Tooling 4.0: Bridging Industry 4.0 with Mold Manufacturing for the Future
Trend

Tooling 4.0: Bridging Industry 4.0 with Mold Manufacturing for the Future

Are you familiar with the latest terminology related to Tooling 4.0? In this article, we'll offer an overview and examples that can help manufacturers understand and align with this evolving concept. Tooling 4.0 revolves around leveraging technology to transform 'inefficient' products into 'intelligent' ones.
Published: Oct 27, 2023
Tooling 4.0: Bridging Industry 4.0 with Mold Manufacturing for the Future

Tooling 4.0

In the Industry 4.0 era, the standard for engineered molds with digital outputs is becoming the norm, and the mold supplier dedicated to creating "engineered" molds is poised to define the future of mold manufacturing.

While many plastic processors and mold makers initially associate Industry 4.0 with robotics and automation, the true essence of this concept comes into focus when manufacturers begin considering machine-to-machine connectivity, data collection, measurable output, and artificial intelligence in the context of the mold and molding process. In the face of mounting cost pressures and intensified competition, tool manufacturers are increasingly embracing new paradigms such as Tooling 4.0, striving to streamline their operations by reducing the number of tool components and processes to minimize downtime and enhance delivery efficiency.

The initial step in implementing Industry 4.0 involves ensuring that every employee comprehends how it facilitates a better understanding and measurement of the dynamics between the press, mold, and resin. Industry 4.0 is not intended to replace human involvement but rather to empower individuals to make informed decisions based on the data it generates. Fostering this understanding is key to the successful implementation of Industry 4.0.

For instance, in the mold condition category, data measurement allows for a comprehensive assessment of the mold's overall condition within each facility. Collected data may encompass reasons for machine stoppage during the molding process, the production of non-conforming products, and target cycle times, among other metrics. Subsequently, scientific molding principles and data collection can be employed to develop a plan for elevating mold performance, necessitating the right tools, processes, and measurable outcomes. The engineering of a product, in this case, an injection mold, involves achieving measurable outputs through mathematical and scientific means. The next step is to gain insight into the internal processes of the mold during each cycle, involving measurements of physical dynamics such as pressure, temperature, and time. Outputs may include a balanced runner system (following the Beaumont theory), mold temperature control (calculated GPM; temperature sensors), conformal cooling (estimated cycle time and targeted part quality), and the optimization of exhaust (pressure sensors). In the age of Industry 4.0, engineered molds with digital outputs are set to become the standard, and mold suppliers dedicated to this engineering-driven approach are poised to shape the future of mold manufacturing. This transition allows for informed adjustments rather than relying on intuition alone.

Following the completion of this initial step, each facility will establish a set of prioritized objectives in various categories, guiding their ongoing efforts to improve tooling. Data collection is integral to ensuring that standard operating conditions (SOC) remain up-to-date and reflective of the current molding conditions for parts within production tolerances. Each facility will revisit its priorities over a span of six months to a year, with high expectations from OEMs and suppliers for mold manufacturers to leverage advanced technology in the future.

The Advantages of the Mold after Entering the Tool 4.0

Reverse Engineering: The ability to handle older molds and components by accurately measuring and creating 3D models and prints.

Virtual Mold Analysis: The capacity to digitally model molding processes with measurable goals, enabling the prediction of cycle times, warpage, venting, part dimensions, and steel safety areas. This process employs pressure and temperature sensors, scientific molding data, and knowledge of tool disassembly.

Mold Engineering Capabilities: The ability to generate 3D mold models for virtual analysis, produce detailed/tolerance drawings, and offer comprehensive mold assembly manuals and preventive maintenance recommendations.

Hot Runner System Expertise: Proficiency in fixed tips, valve gates, hot edge gates, and system balance.

Manufacturing and Measurement of Interchangeable Mold Components: The capacity to manufacture and validate interchangeable mold components, confirm critical steel dimensions, and employ coordinate measuring machines and laser scanning.

Experience in High-Cavity Injection Molding: Expertise in injection molding with 16 or more cavities, along with data collection (utilizing mold analysis) and scientific molding knowledge (pressure and temperature sensors).

Injection Mold Testing Capabilities: Familiarity with Factory Acceptance Testing (FAT), Site Acceptance Testing (SAT), and Design of Experiments (DOE), in addition to process development and turnkey solutions.

As the Internet of Things continues to gain popularity, experts emphasize the critical importance of adopting Industry 4.0 for the survival of enterprises. Regardless of a company's size, transitioning to smart manufacturing is a multifaceted endeavor. In summary, Industry 4.0 and Tooling 4.0 both revolve around the use of technology to transform "inefficient" products into "intelligent" ones.

Published by Oct 27, 2023 Source: Moulding of Die Mold, moldingofdieandmould

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree