What Kinds of Plastic Blow Molding Processes Are There?
Knowledge

What Kinds of Plastic Blow Molding Processes Are There?

The blow molding process is a commonly used plastic processing method that is rapidly developing. This process uses air pressure to inflate an extruded tube of plastic or a hot-melt parison in a hollow mold to form a hollow product. There are different processing methods of plastic blow molding; extrusion blow molding, injection blow molding, stretch blow molding, and multi-layer blow molding each able to meet different needs.
Published: May 31, 2022
What Kinds of Plastic Blow Molding Processes Are There?

What Is Blow Molding?

Blow molding mainly refers to hollow blow molding, which is a method of inflating hot-melt plastic enclosed in a mold to form a hollow product using gas pressure. Blow molding requires the use of a concave mold. Compared with injection molding, equipment costs are lower, adaptability is greater, the moldability is good, and products with complex curves and shapes can be molded.

During blow molding, a hollow, semi-molten tube blank (or parison) is extruded and placed into a mold. The mold is then closed and compressed air is blown into the tube blank to extend and expand it to the sides of the mold. The plastic cools, maintaining the shape of the mold. In general, blow molding is done with low pressures so there is little wear on the mold and production efficiency is high, but control of cycle time is critical.

Material Requirements for Blow Molding Process:

High-quality raw material for hollow blow molding will have a melt index of 0.04 to 1.12. Commonly used materials are polyethylene, polyvinyl chloride, polyamide, cellulose acetate, and polyacetal resin, of which polyethylene is used the most.

What Are the Various Uses of Blow Molding?

Blow molding is a common method for forming plastic packaging containers, water bottles, juice and milk bottles, shampoo bottles, automotive parts, portable picnic coolers, or any other types of hollow plastic products.

  1. Extrusion blow molding:
    Extrusion blow molding is most widely used for plastic packaging and container forming. The thermoplastic pellets or powder, are plasticized by an extruder and pressed through a die to prepare a hot-melt tubular parison. When the parison reaches a predetermined length, it enters the mold and the mold is closed. Air is then blown into the parison to press the melted plastic against the sides of the mold to form it into the desired container.
    Extrusion blow molding gives high production efficiency, has a large allowable range for shapes, sizes, and wall thicknesses, and is highly adaptable. High strength blow molded products can be made with simple equipment and low investment. One drawback of extrusion blow molding it that precision of the product is not high. Thickness of the plastic can vary as it is stretched, and there will be a seam at the bottom of the container.
  2. Injection blow molding:
    With injection blow molding, instead of the plastic passing through a die to form a tube, a single parison is injected into the mold cavity. Air is blown into the parison to expand it out to the surface of the mold where it will solidify. After cooling and setting, the product is taken out.
    Advantages of injection blow molding is that there is no splicing seam, and no post-dressing is required; the dimensional accuracy of the thread and bottle mouth is high, and the inner wall of the neck is a smooth cylindrical surface; output volume can be very large; the bottom of the product has high strength with less material loss; and the wall will have more uniform thickness. However, the investment required for equipment is large, the processing and production cycle is longer than with the extrusion method, the requirements for operators are high, the shape cannot be too complicated, and the size of the container is limited. It is suitable for the production of small precision containers. Medicinal plastic bottles and jars are often formed by this method.
  3. Stretch blow molding:
    Stretch blow molding is a molding method most often used to form beverage containers. The parison will have a preformed bottle mouth. The parison is heated to an appropriate temperature and placed in the mold and a stretch rod is inserted into the mouth of the parison to stretch it to the bottom of the mold. Air is then blown into the parison to stretch or out to the sides of the mold. By using the stretch molding method, as the plastic is stretched, macromolecules in the plastic are oriented in a way that greatly improves the strength and performance of the plastic container.
    With stretch blow molding there is high production efficiency, easy weight control, and little scrap. Most PP bottles and PET bottles such as beverage bottles, are formed by injection stretch blowing. The product has high impact toughness, good rigidity, good transparency and gloss, good barrier properties, and airtightness. Stretch blow molding requires accurate control of the stretching temperature so the investment cost for equipment is high.
  4. Multilayer blow molding:
    Multi-layer blow molding is used for preparing multi-layer containers through a blow molding process using a multi-layer composite parison. Some inherent shortcomings of single-layer plastic containers can be overcome by using multiple plastic layers.
    The multi-layer blow molding method can improve the performance and physical and mechanical properties of plastic containers, such as shading, heat insulation, reducing flammability, improving printability, etc.
Published by May 31, 2022 Source :easyatm

Further reading

You might also be interested in ...

Headline
Knowledge
Pneumatic Power Tools: Reliable, High-Performance Solutions for Industrial Applications
Pneumatic power tools, commonly known as air tools, are widely used in industrial, automotive, and construction settings due to their efficiency, durability, and power. These tools operate using compressed air, making them a lightweight and high-powered alternative to electric or battery-operated tools. Pneumatic power tools are recognized for their ability to perform in demanding conditions, making them an essential choice for tasks such as drilling, cutting, grinding, sanding, and fastening.
Headline
Knowledge
Introducing the Vise Grip: A Tool of Precision and Power
In 1921, in the quiet workshop of a small-town Nebraska blacksmith, William S. Petersen, a Danish immigrant, invented an ingenious tool that forever changed the landscape of hand tools. He created a new type of pliers with a vise-like grip that could lock onto his work. The Vise-Grip's unique ability to securely latch onto any object with unparalleled precision and strength not only made it a tool but a true extension of the craftsman's hand. This provided an adjustable, locking grip for a wide range of applications.
Headline
Knowledge
Adjustable Wrenches and Pipe Wrenches: Essential Tools for Plumbing and Maintenance
Adjustable wrenches and pipe wrenches have long been recognized as effective solutions for mechanical repairs, plumbing, and construction. Due to their ability to adjust jaw width, they are extremely versatile, allowing a single wrench to fit various sizes of nuts, bolts, and pipes. Their practicality and durability have made them indispensable tools for both professionals and DIY enthusiasts. Each type of wrench serves a unique function and offers distinct benefits.
Headline
Knowledge
RO Filter System Quick Fit Connectors: A Reliable and Efficient Solution
Quick fit connectors have become a preferred solution for connecting tubing in reverse osmosis (RO) filter systems due to their ease of use, reliability, and efficiency. Traditional threaded and compression fittings often require tools and careful handling to ensure a secure and leak-free connection. Quick fit connectors, however, offer a tool-free, push-to-connect mechanism that ensures a tight seal in seconds. Their widespread adoption in RO filtration and other water treatment applications highlights their effectiveness in enhancing system performance and installation convenience.
Headline
Knowledge
RO Membranes: A Key to Effective Water Filtration
Reverse Osmosis (RO) membranes have long been recognized as one of the most effective solutions for filtering water, providing clean and purified water for both residential and industrial applications. Originally developed in the 1950s for desalination, RO technology gained widespread acceptance due to its ability to remove contaminants at the molecular level. As concerns over water quality continue to rise, RO filter systems have become a fundamental component in providing safe drinking water, desalinating seawater, and supporting various industrial processes.
Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. However, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. However, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. However, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Agree